1.4 Slope of the Tangent and Rate of Change

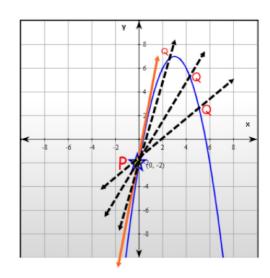
Recall: The slope of a line

$$m=\frac{y_2-y_1}{x_2-x_1}$$

Since two points are needed, we use secants with point Q sliding closer towards point P.

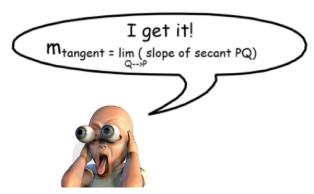
Tangent-is a straight line that most resembles the shape of graph at that point.

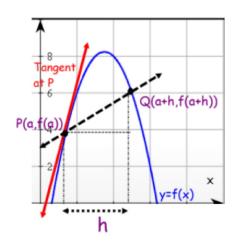
 The slope represents how steep the graph is at that point of tangency.



Desmos Example

So the slope of a tangent to a curve at a point P is simply the limit of the slopes of the secants PQ as Q moves closer to P.





Let P(a,f(a)) be a fixed point on the graph.

Let Q be a point that is a horizontal distance of h units away

Slope of the secant above is:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{f(a+h) - f(a)}{a+h-a}$$

$$= \frac{f(a+h) - f(a)}{h}$$

Ex.1 a) Find the slope of the tangent to the curve $y = 2x^3$ at the point x = 1. b) Determine the equation of the tangent.

`

Ex.2 Find the slope of the tangent to the curve $y = \sqrt{x-3}$ at the point (12,3).

Recall:

Average rate of change (slope of the secant)

$$\frac{\Delta y}{\Delta x} = \frac{f(a+h) - f(a)}{h}$$

Average velocity using the position function s(t) from x=a to x=a+h:

$$\frac{\Delta s}{\Delta t} = \frac{s(a+h)-s(a)}{h}$$

Instantaneous rate of change (slope of the tangent)

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Instantaneous Velocity using the position function s(t) at time

$$v(a) = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{h \to 0} \frac{s(a+h) - s(a)}{h}$$

Ex.3 Given the position function $S(t) = \frac{t}{t+1}$

- a) Find the average rate of change for the interval $1 \le t \le 3$
- b) Find the velocity at t=4

Homework Pg. 18 # 8b,9a,10c,11f,15 Pg. 29 # 9,11,13,14,17

